Study of the ethanol-to-butadiene reaction using ethanol from renewable sources

Blanka Szabó, József Valyon, Róbert Barthos
Research Centre for Natural Sciences

Project meeting
„Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border region”
Interreg, SKHU/1902/4.1/001/Bioeconomy

Research Centre for Natural Sciences,
Magyar tudósok körútja 2, Budapest H-1117, Hungary

22nd September, 2021

www.ttk.hu/palyazatok/bioeconomy
Historical review I.

- 1839: discovery of vulcanization
- 1910: Germany and Russia, 1st investigations
- 1915: Ostromislensky, Two step process, Al₂O₃ or clay mineral catalyst, from acetaldehyde + ethanol mixture
- 1918-1938: Ukraine, Russia, Kazakh dandelion (rubber root)
- 1928: Lebedev, One step process: ZnO-Al₂O₃ catalyst, from pure ethanol
1950: butadiene from the ethylene process, 99.9%

2011: Academic research for the ethanol-to-butadiene reaction, 0.1 % bioethanol

2015: The butadiene demand is 11 million tons in the World.

Historical review II.

- Nitrile and Polychloroprene: 9%
- Polybutadiene: 27%
- Adiponitrile: 6%
- Styrene Butadiene Rubber: 32%
- Arcylonitrile Butadiene Styrene: 18%
- Others: 8%
Reaction mechanism of ethanol to butadiene transformation

- **Ethanol** (\(\text{CH}_3\text{CH}_2\text{OH}\)) can be transformed into **acetaldehyde** (\(\text{CH}_3\text{CHO}\)) using strong acid, or into **ethylene** (\(\text{C}_2\text{H}_4\)) and **diethyl ether** (\(\text{C}_4\text{H}_10\text{O}\)) under base/acid conditions.

- **Acetaldehyde** can react with **hydrogen** (\(\text{H}_2\)) to form **3-hydroxy-butanal** (\(\text{CH}_3\text{C(OH)}\text{CH}_2\text{CH}_2\text{CH}_3\)).

- **Crotal alcohol** (\(\text{CH}_3\text{C(OH)}\text{CH}_2\text{CH}_2\text{CH}_2\text{OH}\)) can be converted to **crotonaldehyde** (\(\text{CH}_3\text{CH(OH)}\text{CHC(=\text{O})CH}_3\)) under base/acid conditions.

- **Crotonaldehyde** can be dehydrated to form **butanal** (\(\text{CH}_3\text{CH(OH)}\text{CHC(=\text{O})}_3\)).

- **Butanal** can be converted to **isobutene** (\(\text{CH}_3\text{C(=\text{C})}_2\)), **1-butene** (\(\text{CH}_3\text{C(=\text{C})CH}_3\)), and **2-butene** (\(\text{CH}_3\text{C(=\text{C})}_2\)) under acid conditions.

- **1,3-butadiene** (\(\text{CH}_3\text{C(=\text{C})C(=\text{C})}_2\)) can also be obtained under acid conditions, and can be hydrated to form **butanol** (\(\text{CH}_3\text{CH(OH)}\text{CH}_2\text{CH}_2\text{OH}\)).
Catalytic test reactions

- Fixed-bed, continuous-flow reactor at atmospheric pressure
- On-line GC, two FID (PLOT-Fused Silica Al₂O₃/KCl – hydrocarbons; HP-PLOT-U - oxygenates) and TCD detector
- The GC was calibrated for reactant and all products separately
- Selectivities were calculated on carbon basis (number of carbon atoms in selected product divided by the summarized number of carbon atoms in all product molecules)
Tested catalysts in the ethanol-butadiene reaction

I. Stage: talc like catalysts

II. Stage: high-SSA SiO₂-MgO catalysts group

Blanka Szabó, Gyula Novodárszki, Zoltán May, József Valyon, Jenő Hancsók, Róbert Barthos: *Conversion of ethanol to butadiene over mesoporous In₂O₃ promoted MgO-SiO₂ catalysts*, Molecular Catalysis, 491 (2020) 110984

III. Stage: high-SSA MgO-SiO₂ catalysts group

<table>
<thead>
<tr>
<th>Wet-kneaded family</th>
<th>Silica-coated family</th>
<th>Internal hydrolyzed family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-SSA MgO-SiO₂</td>
<td>Low-SSA MgO-SiO₂</td>
<td>Low-SSA MgO-SiO₂</td>
</tr>
<tr>
<td>High-SSA MgO-SiO₂</td>
<td>High-SSA MgO-SiO₂</td>
<td>High-SSA MgO-SiO₂</td>
</tr>
</tbody>
</table>
III. Stage: high SSA MgO-SiO₂ catalysts group

1st step: Resorcinol–formaldehyde polymerisation

\[
\text{Resorcinol} + 2 \text{Formaldehyde} \rightarrow \text{Substituted resorcinol}
\]

1 day: 50 °C
3 day: 90 °C
Solvent exchange

Product of condensation

2nd step: Hard templating method for mesoporous MgO synthesis

\[
\begin{align*}
\text{Mesoporous carbon (a_s=729 m}^2\text{/g)} & \rightarrow 3 \text{ days: Mg(NO}_3\text{)}_2 \\
*\text{Internal hydrolyzed family} & \rightarrow \text{Filtrationon} \\
& \rightarrow \text{Drying, RT} \\
& \rightarrow \text{Calcination} \\
\rightarrow \text{High surface area MgO}
\end{align*}
\]

\[a_s = 40 \text{ m}^2/\text{g} \quad (a_s = 5 \text{ m}^2/\text{g})\]
Ethanol conversion over silica-coated family

Low-SSA MgO-SiO₂

- Butenes
- Butadiene
- Acetaldehyde
- DiethylEther
- Butanol
- Conversion
- Ethylene

High-SSA MgO-SiO₂

Temperature, °C

1 g catalyst, 0.5 g ethanol/(g cat * h), 30 ml/perc (4.4 ml/min ethanol + 25.6 ml/min He)
Ethanol conversion over wet-kneaded family

Low-SSA MgO-SiO$_2$

- Butenes
- Butadiene
- Acetaldehyde
- DiethylEther
- Butanol
- Conversion
- Ethylene

High-SSA MgO-SiO$_2$

Conversion, selectivity, %

Temperature, °C

1 g catalyst, 0.5 g ethanol/(g$_{\text{cat}}$ *h), 30 ml/perc (4.4 ml/min ethanol + 25.6 ml/min He)
Ethanol conversion over internal hydrolyzed family

Low-SSA MgO-SiO$_2$

High-SSA MgO-SiO$_2$

- Conversion, selectivity, %

1 g catalyst, 0.5 g ethanol/($g_{cat} \times h$), 30 ml/perc (4.4 ml/min ethanol + 25.6 ml/min He)
The role of acidic and basic sites in ethanol-butadiene reaction

High-SSA MgO

Conversion, selectivity, %

Temperature, °C

SiO₂

1 g catalyst, 0.5 g ethanol/(g cat * h), 30 ml/perc (4.4 ml/min ethanol + 25.6 ml/min He)
Conversion of the 3 intermediates over MgO-SiO$_2$ catalysts

1. 3-hydroxy-butanal
 - Unstable \rightarrow hard to detect

 ![3-hydroxy-butanal](image)

2. Crotonaldehyde
 - Polymerized products
 - Molecular H$_2$

 ![crotonaldehyde](image)

3. Crotyl alcohol

 ![Conversion, selectivity %](image)

1 g catalyst, 0.125 g crotyl alcohol/(g$_{cat}$ h), 30 ml/min (6.4 ml/min crotyl alcohol + 23.6 ml/min He)
• The optimal catalyst in the ethanol-butadiene reaction:

 ✓ High surface area, porous structure,
 ✓ active in dehydrogenation,
 ✓ moderate dehydration activity.

• At comparable ethanol conversions the BD yields over the high SSA MgO-SiO$_2$ catalysts, made using carbon template, were of significantly higher than that over the low SSA MgO-SiO$_2$ catalysts.

• The favorable activity of the high SSA MgO-SiO$_2$ catalysts was explained by the more intimate interaction of the MgO and SiO$_2$ catalyst components: basic MgO sites facilitate ethanol coupling, whereas acidic mixed oxide phase provides adequate dehydration activity.

• Based on our experiments, we described the probable ethanol-butadiene pathway.

SUMMARY
Thank you for your attention!

Acknowledgement

European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconomy)
www.skhu.eu

Róbert Barthos
József Valyon
Alexander Kaszonyi
Ferenc Lónyi
Hanna Solt
Ágnes Szegedi

Attila Domján
Gyula Novodárszki
Magdolna Rosenbergerné Mihályi
Anna Vikár
Miklós Fekete
Ágnes Wellischné Farkas

www.ttk.hu/palyazatok/bioeconomy