APC and UHPLC characterization of products obtained by lignocellulose extraction and/or depolymerization

Magdolna R. Mihályi, József Valyon, Gyula Novodárszki
Research Centre for Natural Sciences

Project meeting
„Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border region”
Interreg, SKHU/1902/4.1/001/Bioeconomy

Faculty of Chemical and Food Technology STU in Bratislava
Radlinského 9, 812 37 Bratislava, Slovak Republic
28 September, 2022

www.ttk.hu/palyazatok/bioeconomy
Advanced Polymer Chromatograph (APC) / Ultra High Performance Liquid Chromatograph (UHPLC)

- Diode-array UV-Vis detector (0.5 μl)
- Refractive Index detector (1.3 μl)
- Waters Empower 3 software
- Thermostat I for small columns (4.6 x 150 mm)
- Thermostat II for large columns (7.8 x 300 mm)
- Sample Manager
- Quaternary Solvent Manager

Project closing conference, Interreg, SKHU/1902/4.1/001/Bioeconomy, 28 September, 2022, Bratislava, Slovak Republic
SEC/GPC/APC

SEC: Size Exclusion Chromatography (1959, Porath and Flodin)

GPC: Gel-Permeation Chromatography (1974, Down Chemical. Co.)
stationary phase: synthetic polymer, e.g. PS

APC: Advanced Polymer Chromatography (2004, Waters Co., UPLC)
stationary phase: rigid, 2.5 µm-size modified silica particles with pore size of 45Å - 900Å.

SEC/GPC/APC

- molar mass averages,
- molar mass distribution of synthetic and biopolymers

\[
M_n = \frac{\Sigma N_i M_i}{\Sigma N_i}, \\
M_w = \frac{\Sigma N_i M_i^2}{\Sigma N_i M_i}, \\
D = \frac{M_w}{M_n}
\]
- Polymers are separated by hydrodinamic volume
- Big One Comes Out First (BOCOF) followed by the smaller molecules
APC columns for aqueous and organic polymer separation

Ethylene Bridged Hybrid (BEH) technology, Waters

- strong and rigid particles
- particle size: 1.7 and 2.5 μm
- resist shrinking, swelling
- easy solvent switching
- high reproducibility
APC columns

10 small columns, diameter: 4.6 mm; length: 150 mm

<table>
<thead>
<tr>
<th></th>
<th>Solvent</th>
<th>Temp. limit (°C)</th>
<th>pH</th>
<th>Pore size (Å)</th>
<th>Particle size (μm)</th>
<th>Molar mass range (g/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQUITY APC XT 45</td>
<td>organic</td>
<td>90</td>
<td>1-11</td>
<td>45</td>
<td>1.7</td>
<td>200 - 5000</td>
</tr>
<tr>
<td>ACQUITY APC XT 125</td>
<td>organic</td>
<td>90</td>
<td>1-11</td>
<td>125</td>
<td>2.5</td>
<td>1000 - 30000</td>
</tr>
<tr>
<td>ACQUITY APC XT 200</td>
<td>organic</td>
<td>90</td>
<td>1-11</td>
<td>200</td>
<td>2.5</td>
<td>3000 – 70000</td>
</tr>
<tr>
<td>ACQUITY APC XT 450</td>
<td>organic</td>
<td>90</td>
<td>1-11</td>
<td>450</td>
<td>2.5</td>
<td>20000 – 400000</td>
</tr>
<tr>
<td>ACQUITY APC XT 900</td>
<td>organic</td>
<td>90</td>
<td>1-11</td>
<td>900</td>
<td>2.5</td>
<td>300000 - 2000000</td>
</tr>
<tr>
<td>ACQUITY APC AQ 45</td>
<td>aqueous</td>
<td>45</td>
<td>1-9</td>
<td>45</td>
<td>1.7</td>
<td>200 - 5000</td>
</tr>
<tr>
<td>ACQUITY APC AQ 125</td>
<td>aqueous</td>
<td>45</td>
<td>1-9</td>
<td>125</td>
<td>2.5</td>
<td>1000 - 30000</td>
</tr>
<tr>
<td>ACQUITY APC AQ 200</td>
<td>aqueous</td>
<td>45</td>
<td>1-9</td>
<td>200</td>
<td>2.5</td>
<td>3000 – 70000</td>
</tr>
<tr>
<td>ACQUITY APC AQ 450</td>
<td>aqueous</td>
<td>45</td>
<td>1-9</td>
<td>450</td>
<td>2.5</td>
<td>20000 – 400000</td>
</tr>
<tr>
<td>ACQUITY APC AQ 900</td>
<td>aqueous</td>
<td>45</td>
<td>1-9</td>
<td>900</td>
<td>2.5</td>
<td>300000 - 2000000</td>
</tr>
</tbody>
</table>
Lignocellulose structure

Lignin types and conditions of extraction / production

Sulfur-containing

Kraft Lignin (KL)
NaOH + Na₂S
~170°C

Lignosulphonates (LS)
CaS (pH ≈ 1-2) or MgS (pH ≈ 3-5)
125-170°C
3-7 h

Sulfur-free

Soda Lignin (SL)
10-16% w/w NaOH
140-170°C
Anthraquinone as catalyst (optional)

Organosolv (OL)
Solvents or mixtures (mainly ethanol)
~200°C, 2.76 MPa
Lewis acids as catalysts (optional)

Steam-explosion lignin (SEL)
Short steam periods (1-10 min)
185-235°C, 1.1-3.2 MPa
Rapid pressure release

Others

Milled wood lignin (MWL)
Series of extraction and concentration steps using different solvents

Pyrolysis (PyL)
~450°C
Vapor residence time of 2 s

Hydrolysis lignin (HL)
Lignin obtained after acid or enzymatic hydrolysis

New Generation “Greener”

Ionic Liquid Lignin (ILL)
Organic salts in liquid stated below 100°C

Deep Eutectic Solvent Lignin (DESL)
HBD + HBA → Eutectic solvent with melting point usually <100°C

Lignin

➢ The second most abundant biopolymer on Earth
➢ Technical lignin from Kraft paper pulp process: \(7 \times 10^7\) t/year
➢ Commercially available Kraft lignin: \(10^5\) t/year
➢ Lignin valorization: as a macromolecule for polymer blending

➢ Polydispersity of Kraft lignin limits its application in polymer-based materials

➢ Solvent fractionation is a method to get well-defined Kraft lignin fractions with low dispersity

Solvent fractionation of LIGNIN

Sample: 1 mg/ml; Injection volume: 30 uL
Columns: Waters Acquity APC XT 200 Å, 125 Å, 45 Å, 80 °C
Eluent: 0.25 ml/min, DMSO + 0.5 % LiBr

➢ EtOAc lignin fraction has low dispersity (M_n and M_w values of 350 and 750 g/mol, resp.)
Eluent: 75ACN/25H₂O + 0.1% TEA
ACN: acetonitrile
TEA: triethylamine

Eluent: 75ACN/25H₂O

Column: 100 mm, XBridge BEH Amide XP column, T: 50°C,
Eluent: 0.13 ml/min 75ACN/25H₂O,
Sample: 15 µl, 1mg/ml D-fructose,
RI detector (40°C)

➢ No mutarotation in presence of TEA

Project closing conference, Interreg, SKHU/1902/4.1/001/Bioeconomy, 28 September, 2022, Bratislava, Slovak Republic
Mutarotation of sugars

Alpha (α) and beta (β) isomers ("anomers") differ in the orientation of the OH at the C-1 hemiacetal carbon

Example: D-glucose

"alpha" (α) isomer:

C5-CH2OH (up) and C1-OH (down) are on opposite faces of the ring

α-D-Glucose
drawn as "chair"
Specific rotation: [α]D 20 + 112°

"beta" (β) isomer:

C5-CH2OH (up) and C1-OH (up) are on the same face of the ring

β-D-Glucose
drawn as "chair"
Specific rotation: [α]D 20 + 18.7°

Note different specific rotations!
UHPLC chromatograms of C5 and C6 sugars

Column: 100 mm, XBridge BEH Amide XP column, T: 50 °C,
Eluent: 75ACN/25H₂O+ 0.1%TEA, 0.13 ml/min
Sample: 15 µl, 1mg/ml sugars
RI detector (40 °C)
Thank for

Barthos Róbert
Lónyi Ferenc
Solt Hanna
Szabó Blanka

Szegedi Ágnes
Vikár Anna
Valyon József
Kaszonyi Alexander

Wellischné Farkas Ágnes
Fekete Miklós
Izsák Lívia
Horváth Blazej

Thank you for your kind attention!

Acknowledgement

European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconomy)
www.skhu.eu
www.ttk.hu/palyazatok/bioeconomy

Project closing conference, Interreg, SKHU/1902/4.1/001/Bioeconomy, 28 September, 2022, Bratislava, Slovak Republic